S-Lab Environmental Good Practice Guide for Laboratories

- A Reference Document for the S-Lab Laboratory Environmental Assessment Framework

Version 1.0 October 2011 ©S-Lab

Developed by the S-Lab (Safe, Successful and Sustainable Laboratories) initiative of HEEPI (Higher Education for Environmental Performance Improvement) See <u>www.goodcampus.org</u>

Inspired by the pioneering work of the LabRATS (Laboratory Research and Technical Staff) programme at the University of California, Santa Barbara See <u>http://sustainability.ucsb.edu/LARS</u>

Lab-CURE:

Chemicals, Utilities, Resources and Environment in Laboratories

HIGHER EDUCATION

Contents

Disclaimer	2
Introduction	3
Issue 1: Chemicals and Materials (CM)	5
Issue 2: Cold Storage (CS)	10
Issue 3: Fume Cupboards (FC)	15
Issue 4: Heating, Ventilation and Air Conditioning (HVAC)	20
Issue 5: Lighting (L)	24
Issue 6: Management and Training (MT)	28
Issue 7: Scientific Equipment (including Personal computing and Printing) (SE)	
Issue 8: Waste and Recycling (WR)	
Issue 9: Water (W)	39

Disclaimer

The information in this document is based on actual experience in UK and North American universities. It aims to provide examples and inspiration and every effort has been made to ensure accuracy but it is not intended to provide specific recommendations for individual laboratories and S-Lab accepts not liability for action or inaction based on this document. Every laboratory is different and readers should satisfy themselves that the information is relevant to their circumstances, verify its continuing accuracy, conduct relevant health and safety assessments and take appropriate professional advice before taking action.

The Guide is also a 'work in progress' and we welcome comment, and information about more best practice examples or guidance that we can include in subsequent editions.

Introduction

Laboratory operation has many significant environmental impacts ranging from energy and resource consumption to chemical and equipment use and disposal. Experience shows that many of these impacts could be reduced or avoided in cost-effective ways without compromising research, safety or teaching - indeed, they can often be enhanced.

S-Lab has produced three related documents to support analysis of environmental impacts in laboratories, and to identify and implement improvement opportunities:

- Individual laboratory assessment framework¹ for individual laboratories/areas within a broader building or organisational unit.
- Organisation and building assessment framework² addressing issues which are common to many individual laboratories/rooms within a building, school or department and which therefore needs to be done only once; and
- A good practice guide (i.e. this document).

There are many S-Lab resources (summarised in Figure 1) which can help with assessment, by:

- Benchmarking S-Lab have conducted several rounds of energy benchmarking of laboratory buildings³, and a report also provides information on typical energy consumption of lab equipment.⁴
- Highlighting Good Practice through a growing number of S-Lab case studies, briefing papers and technical reports which are summarised in this Good Practice Guide.
- Understanding Regulations through the S-Lab guide to key energy and carbon regulations affecting laboratories.⁵

This Good Practice Guide summarises examples of good practice and general information for the 44 criteria in nine of the ten core sections - Chemicals and Materials (CM); Cold Storage (CS); Fume Cupboards (FC); Heating Ventilation and Air Conditioning (HVAC); Lighting (L); Management and Training (MT); Scientific Equipment (SE); Waste and Recycling (WR); and Water (W) - of the laboratory assessment framework.

¹ S-Lab Laboratory Assessment Framework. October 2011 (Version 1.4). Available at www.goodcampus.org ² S-Lab Organisation and Building Assessment Framework. August 2011 (Version 1.0). Available at www.goodcampus.org.

³ Hopkinson L., James P., Lenegan N., McGrath T. and Tait M., 2011. Energy Consumption of University Laboratories: Detailed Results from S-Lab Audits. July 2011. Available at <u>www.goodcampus.org</u>.

⁴ Hopkinson L., and James P., 2011. Saving Money Through Sustainable Procurement of Laboratory Equipment. March 2011. Available at: <u>www.goodcampus.org</u>.

⁵ James P. and Hopkinson L., 2011. Carbon, Energy and Environmental Issues Affecting Laboratories in Higher Education - A Supplement to the HEEPI Report on General Regulations and Schemes on the Topic. July 2011. Available at <u>www.goodcampus.org</u>.

Figure 1: S-Lab Resources and the S-Lab Assessment Process

Issue 1: Chemicals and Materials (CM)

Overview

A large Chemistry school will have an inventory of tens of thousands of chemicals: the School of Chemistry at Edinburgh for example holds around 30,000 types, with an inventory value of £400,000 (see table for link). S-Lab guesstimates that the sector spends at least £60 million on chemicals and consumables a year. All of these will have an environmental impact throughout their life cycle – from manufacture, use in the laboratory through to their eventual disposal (which will often be as hazardous waste). This can be especially true of fine chemicals, which often require a number of synthesis stages (with considerable energy usage and wastage in each).

Minimising the use of chemicals and materials therefore has general environmental benefits, and can also create more tangible benefits such as:

- Reduced costs for example at the University of Edinburgh, an electronic tracking system (see below) saved the School of Chemistry £100,000 of chemical purchasing costs and an additional £12,000 per annum management and disposal costs.
- Improved safety especially if a general reduction in chemical inventories is accompanied by measures to find substitutes for the most hazardous ones.
- More effective compliance with regulations and requirements (e.g. of counter-terrorism agencies) through better information on what is being held and how it is being used.⁶

There are three main ways of achieving these benefits:

• Better chemical management - the Edinburgh example cited in sections CM1 and CM4 below describes how all chemicals containers in the School of Chemistry were barcoded and electronically tracked to provide details of their contents, and precise location within the School. The system allows users to view current in-house chemical inventory when ordering. This reduced duplication of orders and waste of unused chemicals significantly.

⁶ For more information on regulations see James P. and Hopkinson L., Carbon, Energy and Environmental Issues Affecting Laboratories in Higher Education, S-Lab, 2011. Available at <u>www.goodcampus.org</u> under publications.

- Substitution of especially environmentally damaging and/or hazardous chemicals there are many examples of different methods of achieving desired research results or teaching demonstrations, e.g. by using one solvent rather than another. The University of Bradford case demonstrates an attempt to do this systematically, using guidance from the Green Chemistry Network and other sources, whilst the University of Manchester case provides a particular example of ethidium bromide.
- Reduction of the amount of chemicals used in teaching or research even in cases where environmentally damaging chemicals are essential, it may be possible to minimise their use (as well as that of other chemicals). Examples include the use of microscale chemistry the reduction of chemical use to the minimum level at which experiments can be effectively performed, as has been done at the University of Strathclyde reducing the amount of solvents for cleaning glassware, finding alternative ways of doing batch wet chemistry experiments, and by using simulations rather than physical experiments (e.g. as prelab exercises for students).

Criteria	Good Practice Examples	General Information
General		12 Principles of Green Chemistry
		An important starting point for any chemical lab.
		Developed by P. T. Anastas and J. C. Warner and
		reproduced with permission of Oxford University Press.
		Life cycle assessment studies of chemicals
		A list of publications by the Swiss Federal Institute of
		Technology.
CM1. All chemical containers	Better Chemical Management at Edinburgh	Chemicals (Hazard Information and Packaging for
are labelled with details of	An S-Lab Case study describes the University of Edinburgh's	Supply) Regulations
contents, approximate	School of Chemistry electronic 'cradle to grave' tracking of	HSE Guidance on the CHIP 4 regulations.
quantity, ownership, and	chemicals. This system has avoided around a quarter	
emergency details in a	(£100,000 per annum) of the School's chemical purchasing	
manner which can be	costs (though avoidance of duplicate purchases). See also a	
understood by others if the	presentation and some training demos of the system from	
'owners' are not available.	an <u>S-Lab event, Edinburgh, April 2010</u> .	
CM2. The contents,	Better Chemical Management at Edinburgh	
approximate quantity held	See above.	
and location of all chemical		
containers are tracked.		
CM3. The laboratory avoids	LabRATS Surplus Chemical Programme	Action Plan for Chemical Management
accumulation of unwanted	The University of California Santa Barbara's LabRATS	Labs21, the US programme to improve lab
chemical stocks, e.g. by	programme has a website run through the health and safety	sustainability, recommend that labs develop an action
making surplus chemicals	team, which allows researchers to post details of surplus	plan to eliminate, minimize, substitute, recycle, and

available to other	chemicals for use by other teams. The website has an	dispose of harmful chemicals safely, and provide
laboratories, by ordering in	expanded and updated inventory of all the chemicals in	strategies to achieve this.
appropriate sizes, by clearing	storage, complete with pictures and descriptions.	
out when researchers leave		
CM4. Chemicals and	Microscale Chemistry at University of Strathclyde	Mini-scintillation Vials
materials are used efficiently	Colin Gibson's presentation at an S-Lab event at York in	LabRATs recommend the use of mini-scintillation vials
within laboratory	June 2010 on the use of microscale chemistry experiments	for biochemistry work which do the same job as regular
demonstrations,	for Strathclyde's 3 rd year chemistry students.	vials.
experiments and other		
activities so that waste is	Greening Chemistry at Bradford	Clean Glassware with Minimal Solvent
minimised.	An S-Lab case on the review and modification of the	LabRATS recommend various ways to minimise solvent
	University of Bradford's taught chemistry modules to	use when cleaning glassware.
	incorporate green chemistry principles. This included the	
	development of green chemistry metrics such as yield	Alternatives to Wet Chemical Spectroscopy
	efficiency as a tool to compare experimental alternatives,	LabRATs recommend two alternative technologies to
	and to increase student awareness.	wet chemical spectroscopy to minimise the use of
		chemicals.
		The National Microscale Chemistry Centre
		A US based source of good practice.
CM5. All chemicals are	Edinburgh's School of Chemistry tracking system (see CM2	HSE Chemicals at Work
stored in approved and	above) allows storage locations to be controlled and	HSE resources on the storage of chemicals at work.
secure locations.	encourages lab users to return chemicals to their proper	
	(safe) location after use.	
CM6. There has been a	Greening Chemistry at Bradford	<u>12 Principles of Green Chemistry</u> (see CM3 above).
systematic attempt to find	This S-Lab case study (see CM4) describes the modification	
alternatives to especially	of undergraduate practical scripts to include questions on	The Green Chemistry Network run by the University of

environmentally damaging	the hazards of the chemicals used, and the scope for	York's Green Chemistry Centre aims to promote
or hazardous chemicals.	making them greener through alternative reagents and	awareness and facilitate education, training and
	methods, such as catalysis.	practice of Green Chemistry. The website and
		newsletter have a wealth of information including
	Replacing Ethidium Bromide at Manchester	green chemistry practicals for undergraduates.
	This S-Lab case study on sustainable lab practices at	
	Manchester describes how a senior technician In Life	MIT's Green Chemical Alternatives Purchasing Wizard
	Sciences identified 2 suitable replacements for the	A web-based tool which identifies less hazardous and
	hazardous chemical Ethidium Bromide.	more environmentally benign chemicals or processes
		that may be substituted.
	LabRATS Mercury Thermometer Exchange Programme	
	A mercury thermometer exchange programme initiated by	ChemSec's SIN! List
	students at the University of California, Santa Barbara,	The International Chemical Secretariat has produced a
	which replaces them with spirit thermometers for free.	SIN (Substitute it Now!) list consisting of 378 (updated
		in May 2011) chemicals that have been identified as
		Substances of Very High Concern based on the criteria
		established by the new EU chemical regulation, REACH.
		Greener Education Materials (GEMS) for Chemists
		The University of Oregon Chemistry Department has
		been a leader in developing new "green"
		undergraduate chemistry curricula. GEMS is a database
		of green chemistry laboratory experiments and
		educational materials that will enable educators at all
		levels to easily identify and adopt specific experiments
		into their curriculum.

Issue 2: Cold Storage (CS)

Overview

University laboratories, particularly bioscience labs, typically contain a large number of cold storage devices including fridges, freezers, and liquid nitrogen dewars. These can directly account for up to 5% of total laboratory energy consumption, and also create indirect consumption because their heat generation requires more cooling of ventilation air.⁷ They also take up considerable amounts of space which could otherwise be used for research or teaching. There can be a considerable range of energy consumption between different cold storage devices.⁸ At the University of Newcastle metering found that old -80°C freezers may have three times or greater energy consumption than current, efficient, models (see case study cited in CS5). For very old models, there can be a five year payback or less by replacing them with the most energy efficient current models, especially if the opportunity is taken to introduce effective sample management as well.

Some of these impacts are unnecessary because unwanted or obsolete samples are being stored. Many biological samples are being stored at higher temperatures than necessary (e.g. ultracold freezers are often set to maximum settings such as -80C when -70 would be sufficient). Ambient temperature DNA storage technologies are also available. Many cold storage devices store fewer samples than they are capable of because of awkwardly shaped containers, poor racking etc. The energy consumption of cold storage devices rises if circuits or interiors are frosted, or if they are not working effectively. A holistic approach to cold storage requires ensuring that:

- Only wanted samples are actually stored (thereby reducing the overall amount of cold storage required);
- Storage requirements are minimised through efficient use of space;
- Materials are being stored at appropriate temperatures; and
- Devices used are energy efficient, both at purchase and in use.

These measures not only reduce energy and space requirements, but also create science benefits by minimising problems of degradation (e.g. partial defrosting as a result of leaky doors or frequent unpacking to locate samples).

⁷See footnote 3

⁸ Hopkinson L, and James P. 2011. Saving Money Through Sustainable Procurement of Laboratory Equipment. March 2011. Available at www.goodcampus.org

Criteria	Good Practice Examples	General Information
General	Presentations from S-Lab event on Effective and Energy	S-Lab Briefing Paper 4 on Effective and Energy Efficient
	Efficient Cold Storage, Manchester, August 2011	Cold Storage.
CS1. All stored materials are	Rationalising Sample Storage at the Blizard Institute	Eliminate Old Samples in Your Freezer
permanently labelled with	An S-Lab case study describes how the Blizard Institute in	Advice from LabRATS.
details of contents, expiry	London greatly reduced the number of frozen samples – by	
and ownership in a manner	50% in the case of those stored in liquid nitrogen – through	
which can be understood by	better inventory management, and disposal of those which	
others if the 'owners' are not	were unclaimed. They also have a customised tracking	
available	system which uses handheld barcode scanners and specially	
	developed labels.	
	Tracking Samples at CIGMR, Manchester	
	An S-Lab Briefing Paper describes how the Centre for	
	Integrated Genomic Medical Research uses an electronic	
	Lab Information Management System to manage its	
	biobank DNA samples.	
CS2. All stored materials are	Decanting Samples at Conway Institute, University College	
associated with active uses,	Dublin and the University of Manchester	
or are being kept because of	An S-Lab Briefing Paper describes how the Conway Institute	
specific archiving	uses a 'floating' freezer to decant samples when defrosting	
requirements.	freezers – all samples had to be properly accounted for. The	
	University of Manchester also follows this approach and	
	further prevents PhD students from leaving old samples in	
	freezers by signing a completion form before graduation.	

CS2 (contd.)	Sample Rationalisation at the Institute of Cancer Research	
	The same S-Lab Briefing Paper describes the ICR's	
	monitoring of samples which are categorised as fast	
	moving, slow moving (can be stored off site) and	
	disposable.	
CS3. Stored samples and	Room Temperature Storage of Samples at Stanford	Do Not Use Incubators as Fridges
materials are stored at the	A pilot study at Stanford university investigated the possible	LabRATS advises against using incubators as fridges as
highest feasible temperature	transfer of biological samples from freezers to room	they use 5-10 times more electricity.
for effective preservation.	temperature storage. It found an estimated 9-13 million	
	samples (representing 20-25% of the total Stanford sample	
	collection) could be moved from freezers to room	
	temperature technology, saving an estimated £6-12 million.	
	Freezer Challenge Competition at Cardiff	
	An A-Lab Briefing Paper describes how the School of	
	Medicine at the University of Cardiff asked researchers to	
	increase freezer temperatures from -80 to -70 as part of a	
	competition.	
	Information on Sample Storage Temperatures from the	
	University of Colorado	
	(Follow link at the bottom of the page in the above link).	
	A spreadsheet containing details of biological samples being	
	stored by the University of Colorado at Boulder Labs at	
	temperatures warmer than -70°C.	
CS4. All available space is	Better Utilisation of Space at the Blizard institute	
utilised through use of	S-Lab case study describes how standardised containers at	

appropriate racking, storage	the Blizard Institute enabled much more efficient use of	
containers etc.	space in cold storage facilities and, when combined with	
	location tracking, made sample retrieval quicker and easier.	
	Allocating Racks at University of Newcastle	
	At the University of Newcastle's Institute for Ageing and	
	Health they allocate racks rather than whole freezers to PIs.	
CS5. There is regular (at least	Maintaining Fridges at the University of Oxford	Defrosting Tips
annual) cleaning, defrosting	Oxford has a programme to keep fridges frost-free and	Advice from LabRATS.
and maintenance of devices.	clean. It has also installed compressor motor controllers,	
This includes cleaning heat	which reduce energy consumption, on a number of	
exchange coils on fridges and	laboratory fridges which pay for themselves within 2-years.	
freezers, and defrosting of		
any devices without auto-	Refrigeration Motor Controls at the University of Glasgow	
defrost.	University of Glasgow used Salix funding to scientific fridges	
	and a/c saving £2,400 a year with a 2.3 year payback.	
	Cleaning Freezers at the University of Newcastle	
	The University of Newcastle's Institute of Ageing and Health	
	cleans the freezer filters every month, and everyone who	
	has a -80 freezer is part of a service contract.	
CS6. Energy costs of new	Freezer Replacement at the University of Newcastle	Saving Money Through Procurement
cold storage devices are	An S-Lab case study on Newcastle's -80°C freezers which	An S-Lab report with recommendations for whole life
quantified and incorporated	cost up to £2,000 a year to run, with an average of £1,100.	costing when purchasing fridges and freezers, and data
into a whole life costing	£180,000 was used to replace 36 -80°C freezers over 10	on measured energy consumption from the universities
approach to new purchases.	years old, saving 136,836 kWh of energy and creating	of Newcastle and York.
	additional space and reliability benefits.	

CS6 (contd.)	Energy Efficient Fridges at Cambridge	Energy Star for Lab-Grade Fridges and Freezers
	An S-Lab case study which describes an incentive scheme	The US Environmental Protection Agency (EPA) is
	for energy saving at Cambridge which rewards/penalises	developing an Energy Star label for lab grade fridges
	departments through energy targets. The School of	and freezers which will enable researchers to find the
	Biological Science which achieved energy savings resulting	most energy efficient products on the market.
	in a transfer of £43,000, put the funding into a ring fenced	
	fund to finance further measures, such as purchase of very	
	energy efficient (A** rated) fridges.	

Issue 3: Fume Cupboards (FC)

Overview

Fume cupboards are critical for health and safety, yet consume significant amounts of energy – mainly in the form of moving large quantities of (often heated or cooled) air around. A single device running continuously at full power can directly and indirectly use up to £2,000 electricity and gas a year. In many labs fume cupboards are operated 24/7 even when there are no experiments running. In some cases these could be switched off with attendant reductions in energy consumption.

Good practice is generally:

- To shut fume cupboard sashes when no one is working in them. This greatly reduces energy consumption for variable air volume (VAV) fume cupboards and is advisable on health and safety grounds for all designs. This can be achieved through education/awareness raising (stickers, posters, training), ideally coupled with incentives (not necessarily financial) to encourage long term behaviour change. An engineering solution is installation of automatic sash closure based on Zone Presence Sensors (ZPS) which detect if anyone is within a given range of the sash and close them when this is not the case.
- To switch off fume cupboards which aren't being used for long periods e.g. at night-time, weekends or during vacations. In many labs fume cupboards are operated 24/7 even when there are no experiments running. The fume cupboards should ideally have switches that operators can access to switch them off. Switching off unused fume cupboards can save significant amounts of energy.
- To ensure that fume cupboards are working properly and are well maintained. By law universities are required to carry out 14 monthly examinations to ensure fume cupboards are well maintained but it is not clear that this is done in every university department. Regular maintenance ensures safe operation and optimum energy consumption.
- To ensure there are no obstacles to internal air flow and that fume cupboards are not used as chemical storage cupboards. Fume cupboards are a very costly and energy inefficient way of storing chemicals which should be stored in ventilated cabinets. Blocking the air vents with equipment and chemicals means that fans have to work harder and increases energy consumption and can compromise safety.

Criteria	Good Practice Examples	General Information
General	Cutting Energy Use with VAV	Energy Consumption of University Laboratories:
	An S-Lab event held in Cambridge in May 2009 with	Detailed Results from S-Lab Audits
	presentations on Variable Air Volume fume cupboards and	S-Lab audited the energy consumption of two
	Demand Control Ventilation.	chemistry and three life science laboratories and the
		final report has detailed information on the energy use
		of fume cupboards.
FC1. Fume cupboard sashes	Harvard University's Shut the Sash campaign	
are generally down when no	Harvard Medical School has run "Shut the Sash" campaigns	
one is working in them,	as a contest among labs which encouraged behaviour	
especially at night or over	change for a month, which eventually became a habit. As a	
weekends.	result of the campaign, the average sash opening in the five	
	participating buildings dropped from 12 inches to 2 inches	
	and saved the school over \$100,000 (~£60,000) in energy	
	costs per year.	
	Automatic Sash Closure at Cambridge	
	A presentation at an S-Lab event which describes the trial of	
	Zone Presence Sensors (ZPS) on fume cupboards in 2 labs	
	with VAV fume cupboards at the University of Cambridge. It	
	was found that the lab fitted with ZPS, which was the busier	
	lab, was using less power to supply more air than the lab	
	without ZPS. It was estimated that there was a 40%	
	electrical saving for the lab with ZPS.	

FC2. Fume cupboards are	Raising Awareness at Nottingham	Fume Hood Energy Model
switched off when not in use	An S-Lab case on the University of Nottingham Estates	Lawrence Berkeley Lab has a useful fume cupboard
for extended periods, where	department which sends a monthly report on the cost of	energy calculator which enables comparison of energy
it is possible and when safe	fume cupboard energy usage in the previous month	consumption of different fume hoods (US conditions
to do so (e.g. no effect on	(obtained from the Building Management System) to	only) which can show the effects of switching off.
pressure requirements).	departments/schools together with the percentage savings	
	compared to their running 24/7 at full power. Potential	
	savings are estimated at around £150,000, or over 4 million	
	kWh of energy per year.	
	LabRATS Hoods Off Campaign	
	A voluntary energy saving program run by LabRATS at	
	University of California Santa Barbara, especially suited for	
	older laboratory buildings where single fans exhaust each	
	fume cupboard. Free pizza was offered to labs who offered	
	to turn off their unused fume cupboards.	
FC3. There are effective	Influencing User Behaviour at the University of Oxford	
mechanisms to encourage	An S-Lab case on Oxford's Chemistry Department, where	
energy efficient use of fume	devolved budgeting and safety concerns has meant that the	
cupboards.	Head of Department and senior departmental staff take	
	fume cupboard sash closure very seriously. Actions include	
	regular checks and using annual testing as a means of	
	educating users in how to use fume cupboards effectively	
	(see below). The Department is also considering introducing	
	fines for sashes left open when cupboards are unattended.	

FC3 (contd.)	Financial Incentives at Cambridge	
	An S-Lab case describes a shared cost/savings scheme for	
	reducing electricity at the University of Cambridge	
	introduced in 2008. All departments have a target based on	
	previous year's electricity use with allowance for growth.	
	This provides more money for Departments who better	
	their targets, and motivation to do better for those who fail.	
FC4. There are no	Removing Obstacles to Internal Air Flow at the University of	
unnecessary obstacles to	<u>Oxford</u>	
internal air flows within any	An S-Lab case (see above) describes how during the annual	
of the fume cupboards in the	inspection of fume cupboards at the University's Chemistry	
lab, e.g. blocking of air vents	Department the engineer advises on the removal of	
with containers or	obstacles to internal air flows. In one case this resulted in a	
equipment.	lab user building shelves above the rear baffles to avoid	
	blockages.	
FC5. The lab complies with	Annual Maintenance and Servicing at the University of	A Simple Guide to Local Exhaust Ventilation (LEV)
COSSH regulation 1999	Oxford	Published by HSE. The COSHH regulation specifies that:-
which requires 14 monthly	An S-Lab case (see above) describes how the examination is	(a) An employer who supplies a control measure to
examinations to ensure fume	used as a foundation for broader actions such as annual	comply with the regulations shall ensure that it is
cupboards are "maintained	servicing of air balance controls and ensuring effective use.	maintained in an efficient state, in an efficient working
in an efficient state, in		order, in good repair and in a clean condition
efficient working order, in		(b) LEV plant provided to comply with the regulations
good repair and in a clean		should be examined and tested at least once every 14
condition".		months, (in practice, once a year).
		(c) A suitable record of the examination and test should
		be kept for a minimum of 5 years from the date on
		which it was made.

FC6. Fume cupboards are not	Decluttering Fume Cupboards at the University of	
used as storage cupboards	Manchester	
for prolonged periods (i.e.	An S-Lab case study on sustainable lab practices at	
longer than the length of the	Manchester describes how the Geochemistry department	
set-up and conduct of an	has reduced the number of alarms on fume cupboards by	
experiment).	ensuring that the air vents aren't blocked by chemicals or	
	equipment and liaising with Estates to regularly check	
	clogged filters.	

Issue 4: Heating, Ventilation and Air Conditioning (HVAC)

Overview

The moving and conditioning of air through ventilation systems generally accounts for 40-60% of laboratory energy use.⁹ These meet two different aims – providing air flow so that any hazardous or otherwise unwanted substances within the lab are diluted and dispersed, and also providing, through heating and cooling, the comfortable ambient conditions are also critical for user comfort and productivity and in some cases for the success of scientific experiments. Balancing these is always difficult, and even more so when laboratory layouts or uses change, so that they often don't work properly. Lab users may experience hot or cold spots, excess airflow or noise. Air flows are also often oversized for requirements as a result of building in a contingency element. Labs also tend to contain many split a/c systems which are often less efficient than central cooling systems.

Dealing with these issues is difficult for laboratory staff as control of the HVAC usually resides with Estates, and solutions to problems often require considerable capital investment (which is often cost-effective, but difficult to achieve when budgets are challenged). Hence, the laboratory-specific criteria focus on communication and collaboration with Estates as the key actions for laboratory users.

⁹ See footnote 3

Criteria	Good Practice Examples	General Information
General	Although more relevant to HVAC specialists, the following S-	Energy Consumption of University Laboratories:
	Lab cases highlight good practice in laboratory ventilation:	Detailed Results from S-Lab Audits
		A July 2011 S-Lab report with detailed breakdowns of
	Well Designed ventilation at Queen's University Belfast	energy consumption by category in 5 university labs.
	The University's Centre for Cancer Research and Cell	
	Biology, built in 2007, which has a Containment Level 3 lab,	Laboratory Energy Audits: A Process Guide
	whose supply air is drawn from the main laboratory, with all	A sister guide to the detailed results of lab energy
	extract through safety cabinet fans and filters. This avoids	audits. This report identifies a 3-stage audit process,
	any possibility of positive pressure, and avoids the need for	and methods of estimating consumption even when
	a separate ventilation supply and extract system, with	sub-metered data is not available.
	consequent savings in capital and running costs.	
		Sustainable Laboratories for Universities and Colleges -
		Reducing Energy and Environmental Impacts
		A 2007 S-Lab report which remains relevant.
		Sustainable Laboratories – Lessons from America and
		the Pharmaceutical Sector
		A 2007 S-Lab report which remains relevant.
HVAC1. The HVAC system is	Annual Servicing of Air Balance Controls at the University of	Remove Space Heaters
working to specification. If	Oxford	Guidance from LabRATS on the costs of using individual
there is evidence that it is	This S-Lab case study describes actions to reduce energy	space heaters and what to do if your lab building is not
not, then laboratory users	consumption in the University's Chemistry Department,	a comfortable temperature.
have made Estates aware of	including an annual servicing of air balance controls	

it. (Possible signs of not	(together with face velocity validation).	
working to specification are		
frequent alarms on fume	Increased Set Point Temperature in Summer at the	
cupboard use; known	University of Oxford	
problems with ventilation	This presentation by Energy Manager Philip Pike describes	
equipment; unpleasant	how the University uses a set point of 24 degrees Celsius in	
working conditions for many	summer rather than 18 degrees, and does not run cooling	
users because of draughts	at night in its laboratories.	
and excessive cold or heat;		
fume cupboards not	Night and Weekend Setbacks at the University of Edinburgh	
functioning properly and	This presentation at an S-Lab event describes an audit of	
difficulty opening/closing	the University's Cancer Research Centre and the energy	
doors because of pressure	benefits of night and weekend setback of the ventilation	
differentials).	system.	
HVAC2. There are no	Continuous Commissioning at Imperial College	Energy Efficiency Ratings of Cooling Equipment
examples of large spaces	S-Lab case describes how continuous commissioning at	EUROVENT, the European Committee of Air Handling
being ventilated or	Imperial College enabled night setback of a lab which was	and Refrigeration Equipment Manufacturers, provide
conditioned to a high	not being intensively used at night.	certification (and energy efficiency data) for a wide
specification in order to		range of HVAC equipment, including comfort Air
meet the needs of a small	Ventilation restricted to occupancy hours at Oxford	Conditioners, air handling units, fan coil units, heat
number of activities/devices,	The University of Oxford's Richard Doll building changed lab	exchangers for refrigeration etc.
or occasional circumstances.	ventilation to occupancy hours only, turning heating off at	
If there are examples, then	night and during summer, and cut gas consumption by 58%	
laboratory users have made	and saved over £36,000 a year.	
Estates aware of it.		
	Rationing Air Conditioning at the University of Bristol	
	The University has a review procedure for all new requests	

HVAC2 (contd.)	for a/c in laboratories and other buildings. This includes the	
	application of a spacially developed decision trac to	
	application of a specially developed decision free to	
	ascertain if special cooling needs are present, and a heat	
	gain tool to analyse whether the heat load is sufficient to	
	require cooling. If cooling is necessary, a new specification	
	ensures that equipment is energy efficient and is properly	
	installed.	
HVAC3. Equipment/plant		OSHA Factsheet on Laboratory Noise
noise does not cause		While the noise levels in most laboratories are
significant annoyance or		below the threshold level that damages hearing,
discomfort to users over		laboratory noise, e.g. from equipment operation, fans
prolonged periods. If the		and compressors in fridges and freezers, can be
noise relates to plant,		sufficiently loud to be annoying and stressful. This US
Estates have been made		document provides guidance on how it can be
aware of it.		controlled.

Issue 5: Lighting (L)

Overview

Lighting can consume a significant proportion of lab electricity – up to 15% - particularly when labs run 24/7 or in bioscience labs with a lot of plant growth rooms.

Actions for improvement include:

- Maximising the use of natural light this has proven benefits for health and productivity compared to artificial light, and of course uses no additional energy. However, some labs have blinds drawn and artificial lighting on for much of the year. Whilst glare is a significant issue, there are other ways of dealing with this than completely blocking daylight.
- Switching off lights that are not needed either manually or through presence detection systems. Lighting design specifications for labs are sometimes too high for subsequent uses. The US LabRATS programme has removed many luminaires where they are not necessary. Task lighting of a small area can also be more beneficial to users, and energy efficient, than general lighting of a much larger space.
- Replacing light fixtures with more energy efficient lighting existing luminaires may be replaced with high efficiency ones such as slim T5 fluorescent lights or LEDs. LED lighting is not only more energy efficient, but in many cases may be better for the science because it can be more easily tuned to specific wavelengths.

Criteria	Good Practice Examples	General Information
General		
L1. There is maximum use of	Maximum Use of Natural Lighting at the University of	
natural lighting.	Newcastle	
	An S-Lab case on the University's BREEAM Excellent	
	Baddiley-Clark Medical Sciences Building which maximises	
	the use of natural light, An external glass wall provides a	
	high level of natural lighting to write up areas and (via an	
	internal glass wall) to the laboratories, which also have	
	external windows.	
	Natural Lighting at Queen's University Belfast	
	An S-Lab case on the Centre for Cancer Research and Cell	
	Biology, built in 2007, which was designed on a constrained	
	site with a full height glass atrium, and the main labs	
	around the perimeter for maximum daylight. Daylighting is	
	increased by glazed screens on internal office walls, and	
	windows to secondary labs.	
L2. All luminaires are high	High efficiency lighting at the University of Newcastle	Lighting Federation Technical Statements
efficiency ones, e.g. compact	An S-Lab case (see above) describes the use of energy	Detailed information on lighting practice.
fluorescent lamps for task	efficient downlights, which allows fewer fixtures to be used.	
lighting, LED or T5	The designers also avoided over-complex control systems	
fluorescent lights (rather	and fixtures which are likely to require a lot of	
than T8 or T12s) for	maintenance.	
overhead lighting.		

L2 (contd.)	LED for Emergency Lighting at the University of St Andrews	
	A presentation at an S-Lab event shows how the new	
	Medical Sciences Building at the University of St Andrews	
	uses an LED source through fibre optic cable for emergency	
	lighting.	
L3. The lab has examined	LEDs for Plant Growth at the University of Manchester	
replacement of mercury with	The University used Salix funding to switch T8 and T12	
LED low energy lighting for	lamps in growth chambers with low energy LED lamps,	
scientific tasks and is doing	saving over £2,000 a year and improving research as the	
this whenever possible, e.g.	lamps wavelengths were more easily adjustable.	
in growth chambers,		
microscopy and plant growth		
rooms.		
L4. Room/corridor lighting is	LabRATS BulbFree Campaign	
always turned off or down	A campaign at the University of California Santa Barbara	
when not required, and	that encourages researchers to evaluate how much light	
when compatible with	they need and to intentionally remove bulbs in overlit	
safety. If this is not the case,	areas.	
and requires Estates action,		
lab users have made them	Automatic Lighting Controls at the University of Cambridge	
aware of the opportunities.	An S-Lab case describing an energy incentive scheme at the	
	University of Cambridge which rewards/penalises	
	departments based on energy targets. The School of	
	Biological Science made savings through measures which	
	included use of LED spot lights, installation of automatic	
	lighting controls and encouraging staff to turn off lights.	

L4 (contd.)	Motion-controlled lighting at Manchester	
	An S-Lab case study on sustainable lab practices at the	
	University of Manchester describes how one research	
	centre saw motion-controlled lighting in use in	
	Geochemistry and is now piloting it.	
L5. Illumination is	Using Task Lighting	Lighting Benchmarks
appropriate to tasks. If this is	LabRATS guidance on the use of task lighting in place of	LabRATS recommend levels of < 1 Watt/square foot
not the case, and requires	overhead lighting.	(~11 W/m ²). The <u>Carbon Trust</u> have good practice
Estates action, lab users have		lighting benchmarks for offices of 12W/m ² (ECON19)
made them aware of the		
opportunities.		S-Lab energy audits (see footnote 3) found lighting in a
		bioscience lab was 11 W/m ^{2} and in a chemistry lab was
		4 W/m ² though this included corridors, plant rooms etc.

Issue 6: Management and Training (MT)

Overview

Many actions to improve laboratory environmental performance require approval or active support by academics, and some may also have shortterm costs (recompensed by medium-long term benefits). Senior management backing is obviously important in both cases. S-Lab cases and other materials can provide useful evidence to persuade senior managers of the benefits and feasibility of taking action. Often, things are not done because no-one takes responsibility for them. Assigning responsibilities – and ensuring that those given them can make a difference in practice – can be a powerful catalyst for improvement.

Criteria	Good Practice Examples	General Information
General		
MT1. There is senior	Aiming for the Greenest Chemistry Research at the	
management support (e.g.	University of Oxford	
Head of Department) for the	An S-Lab case describes the support of the Department	
lab assessment and a	Chair, Professor Steve Davies, for improvement actions, and	
willingness to implement any	his goal that a planned new Chemistry building will be the	
recommendations which	"greenest chemistry research facility in the world."	
result from it.		
	A Strategic Approach to Sustainability at the University of	
	Manchester and University of California, Irvine	
	An S-Lab Briefing Paper describes PVC level support for	
	sustainable laboratory initiatives at the two institutions.	
	Manchester has established a task force, one of whose first	
	actions has been using the S-Lab assessment framework.	

MT2. The laboratory has, or	Sash Closure Enforcement at the University of Oxford.
is connected to, a	S-Lab Case 7 describes how the Chemistry Department has
responsibility structure for	energy efficiency induction for new lab users, focusing on
key aspects of environmental	the financial and safety benefits of sash closure, and sash
performance, e.g. sash	closure reminders, through labelling, publicity and
closure.	inspections by the Chair of the Department of Chemistry.
	Sustainable Labs Group at Institute of Cancer Research (ICR)
	The same Briefing Paper on Strategic Lab Initiatives notes
	the ICR) has established a multi-site, multi-function,
	sustainable labs group which are systematically evaluating
	and implementing improvement actions in their labs.
MT3. The laboratory	LabRATS at the University of California, Santa Barbara
participates in broader	The Laboratory Research and Technical Staff (LabRATS)
networks (within the	initiative – which originated at UCSB but is now state wide -
institution or beyond it)	is a groundbreaking, dedicated group which assists
which provide opportunities	laboratories in becoming more sustainable. It has a number
to discuss and take action on	of programmes including Lab Assessments for Research
environmental issues.	Sustainability (which inspired the S-Lab lab assessment
	framework) and a wealth of resources on its website.
MT4. All laboratory users are	Fume Cupboard Reporting at the University of Nottingham
made aware of the energy	An S-Lab case which describes how the University's Estates
and environmental impacts	Department sends monthly reports on fume cupboard
of their activities and the	energy use to lab users, with an estimate of the amount of
actions they can take to	savings compared to their running 365/24/7. This is
mitigate them.	complemented by stickers on fume cupboards, posters and
	other publicity materials highlighting the energy benefits of

MT4 (contd.)	closing sashes in VAV fume cupboards, and the safety	
	benefits in all kinds.	
	Low Carbon Research at NREL	
	A SustelT case on the new National Renewable Energy	
	Laboratory (NREL) in Colorado, US. which targets net zero	
	carbon operation through its sustainable design features.	
	The data centre's energy (total and key areas such as	
	lighting and plug load) and water consumption is displayed	
	in real time to users.	
MT5. There is a formal	ISO14001 at the University of Bristol	
improvement process in, or	S-Lab Briefing Paper 6 on Waste Minimisation in Labs	
connected to, the laboratory	describes how annual hazardous waste audits are	
which has had demonstrable	conducted jointly by lab and health and safety managers as	
impacts on issues covered in	part of the university's ISO140001 scheme. Any non-	
this assessment, or other	compliant labs must correct any issues within a given time.	
issues which are clearly		
related to environmental	Continuous Commissioning at Imperial College	
performance.	Imperial has a continuous commissioning programme which	
	identified that considerable areas of one lab building were	
	not being used at night, creating an opportunity for setback.	
	This allowed air change rate to be reduced from 13 to 6 air	
	changes per house, saving nearly £50,000/year in energy	
	costs.	

Issue 7: Scientific Equipment (including Personal computing and Printing) (SE)

Overview

University laboratories typically contain hundreds of items of equipment, much of it specialised and hugely expensive. Scientific equipment can be a significant proportion of laboratory electricity consumption – up to 30-40% or higher in some labs. Some of this equipment is left on 24/7 even when not used or needed, which wastes significant amounts of energy. In some cases equipment needs to be left on all the time because of the need for careful calibration. In other cases special procedures are needed to shut the equipment down safely. Often equipment is left running because lab users and technicians are not sure whether the equipment is about to be used, or can be switched off or needs some special procedure to switch off.

University laboratories are also increasingly IT-intensive, and responsible for a significant component of the sector's ICT-related environmental impacts. This impact will become even larger as a growing proportion of research and teaching is conducted 'in silico' rather than *in vivo* or *in vitro*. While there is an increasing focus on reducing the environmental impacts of university IT, lab related IT is often isolated from mainstream IT activities and IT departments within the sector. This is because much lab ICT equipment is purchased and operated independently of IT departments; some aspects of STEM-related ICT (e.g. HPC, high end workstations) are very specialised, are often specified and operated independently of mainstream IT functions, and have their own dedicated networks; and even non-specialised ICT decisions are often influenced by academic scientists and laboratory technicians as much as IT professionals.

Good practice generally involves:

- Switching off equipment which is not needed Observation can show which equipment are running unnecessarily. Plugs/off switches should be easily accessible and energy saving devices, e.g. automatic timers on drying ovens, 'slave' sockets, which switch off all connected peripherals when main equipment can be used. Stickers/posters can be used to raise awareness and it is also good to have someone assigned responsibility for making sure equipment is turned off.
- Regular maintenance and servicing of equipment this can help it to run more efficiently in terms of energy consumption.
- Sharing equipment to avoid duplication S-Lab has found many examples of equipment duplication between different research groups within the same building, or in other parts of the university. Sharing equipment can save costs, space and reduce waste from ultimate disposal of the equipment and is now being strongly encouraged by funding bodies such as Research Councils.

- Run equipment at high loadings many items of equipment, e.g. drying ovens, some autoclaves, often have a base power consumption which means that their total consumption does not increase in line with loading. Hence, it can be more energy efficient to batch small job/loads, rather than running many times at low loadings, or to use smaller units more frequently.
- Purchasing energy efficient equipment the results of S-Lab energy audits have shown that lab equipment and IT can be a significant proportion of total lab energy use around 25% in bioscience labs and 15% in chemistry labs. There is a wide variation in consumption between different types of equipment, as a result of both differing power draw (e.g. a range of 7-70 kWh/day for different models of -80 freezer), and their pattern of use (e.g. freezers and fridges are generally in continuous operation, whereas a centrifuge may be used only a few times a week or month for short periods). Energy, water and waste costs can make a significant contribution to the whole life costs of equipment in some cases more than the initial purchase costs. If these costs are taken into account at procurement stage, it may be more cost effective to purchase more resource efficient but higher first cost equipment at the outset.

Criteria	Good Practice Examples	General Information
General		
SE1. Equipment that can be	Turning Off Equipment at the University of Cambridge	Powerdown Stickers for Equipment
is generally turned off or	An S-Lab case describing a financial incentive scheme for	Downloadable/editable stickers which can be placed
powered down when not in	energy saving at Cambridge, which rewards departments that	on equipment indicating whether equipment can be
use, together with related	save energy and penalises those who fail to meet targets. The	switched off, whether care is needed before it is
devices (e.g. AC/DC	School of Biological Science achieved savings by, amongst	switched off, or it should not be turned off.
converters).	other things, continuing vigilance by Departmental staff who	
	encouraged colleagues to turn off lights and (more	Powering Down Personal Computers
	importantly) equipment such as autoclaves off every night.	A briefing paper on the benefits of powering down
		PCs and monitors and examples of universities who
		have done this successfully.
		Turning Off Equipment
		LabRATS guidance on the benefits of turning off
		ovens, chilled centrifuges and GCs when not in use.
SE2. Energy, water and	Energy Costs and Purchasing at the University of York	Sustainable Procurement of Laboratory Equipment
waste issues and costs	An S-Lab case which describes how the University of York	An S-Lab report with detailed information on
(including any secondary	Department of Biology track and benchmarks equipment	equipment energy use and recommendations for
costs such as increased room	energy and has developed energy efficient procurement	whole life costing on key equipment. See also
cooling) are explicitly	guidance (accompanied by performance data). It also covers	presentations from the <u>S-Lab event, London 18/3/11</u>
considered when purchasing	the additional costs of energy efficient freezers (compared to	on this topic.
lab equipment.	cheaper standard equivalent models).	

SE2 (contd.)		Interest-free Funding for Energy Efficient Labs
		An S-Lab Briefing Paper describes interest-free
		recoverable grants which are available from the
		Recycling Green Fund (<u>RGF1</u> and <u>RGF2</u>) to fund energy
		efficient lab equipment and plant.
		Green IT Labelling Schemes
		SusteIT Briefing Papers on Energy Star for ICT and
		Green ICT Product Labelling Schemes explain the
		different ICT eco-labels which can be specified to
		ensure the most energy efficient and environmentally
		less damaging products are purchased.
		Labs21 Energy-Efficient Laboratory Equipment Wiki
		A US Labs21 facility to share information about
		laboratory equipment efficiency among users, and
		encourage manufacturers to provide more data on
		the energy use characteristics of their products.
SE3. The laboratory supports	'Freecycling' Equipment and Consumables at the University	Setting Up Free Shelves
and participates in	<u>of York</u>	LabRATS guidance on how to set up a free shelf where
mechanisms which allow lab	An S-Lab case describes how the University's Biology	researchers can donate surplus equipment.
equipment to be shared	Department has a 'freecycle' table for small equipment	
between users in different	where surplus equipment or consumables can be placed and	
teams/labs where	taken by other lab users for free. Having a departmental	
appropriate.	energy manager also helps to identify under-utilised	
	equipment (and opportunities to save money through	
	consolidation).	

SE3 (contd.)	LabRATS Flea Market for Lab Equipment	
	LabRATS runs a twice annual 'flea market' to swap surplus	
	equipment and operates a Surplus Inventory Program to	
	recycle surplus equipment via a dedicated website.	
	University of Manchester's Equipment Library	
	S-Lab case 14 notes that Manchester has established a	
	lending library for redundant equipment which can be lent	
	out to other researchers. The equipment is tested and, if	
	necessary, repaired – and taken back if required by donors.	
	Equipment Cataloguing Web Site at the University of	
	Loughborough	
	The University has developed an open source online system,	
	Kit-Catalogue, to help effectively catalogue, record and locate	
	their kit (equipment). The system can also be opened up to	
	the public, allowing companies and other third parties to hire	
	out equipment that might otherwise be lying idle.	
SE4. There is regular (at least	Servicing Freezers at the University of Newcastle	
annual) checking and	All -80 freezers at the University of Newcastle's Institute of	
servicing of large equipment.	Ageing and Health is part of a service contract.	
SE5. Energy-intensive	Right-sizing ovens at University of Manchester	Rightsizing Equipment
equipment is 'rightsized' for	This S-Lab case on sustainable lab practices at Manchester	LabRATS advice on how to rightsize equipment.
tasks and used with as high	notes how Geochemistry bought a smaller drying oven to	
loadings as possible.	avoid putting larger part loads into a larger oven. Central	
	autoclaving at Manchester also allowed phasing out of 10	
	local autoclaves and to operate on very high loadings.	

Issue 8: Waste and Recycling (WR)

Overview

In addition to the chemical waste covered in Issue 1, there is also waste from a variety of other sources including:

- Broken, obsolete or surplus equipment some of this can sit idle for years at a time in university labs;
- Packaging waste;
- Disposables/consumables in scientific experiments; and
- Biological waste.

Waste is much more expensive than it usually appears to be because its costs usually fall into different budgets. Hence, no-one sees the overall figure. This often includes:

- The costs of purchasing items which end up as waste;
- The costs of managing and storing items which end up as waste (including any space charges for floor area taken up);
- The costs of managing, treating and storing waste itself (again including floor space);
- The costs of disposing of waste, which can be expensive when it is hazardous.

Good practices to minimise waste include:

- Centralised storage and/or tracking system for chemicals and materials (see Edinburgh example over)
- Convenient recycling facilities (particularly for consumables and packaging waste);
- Careful separation of clinical/hazardous waste so that other wastes are not commingled with it;
- Procurement contracts that specify collection of containers/packaging;
- Listings, reuse tables or similar mechanisms to enable unwanted equipment, materials etc to be donated or exchanged;
- Ordering or making up in quantities appropriate to needs to avoid surpluses which are never used.
- Awareness materials around the laboratory, and on line; and induction courses for new staff and students.

Criteria	Good Practice Examples	General Information
General		S-Lab Briefing Paper 6 on Waste Minimisation and
		Recycling in Labs (includes examples summarised left)
WR1. There are convenient	University of Bristol Cuts Lab Waste	Reuse Disposable Plastic and Glass Items
recycling facilities for	An S-Lab Briefing Paper describes the successful initiatives	Guidance from labRATS on how to take advantage of
materials, packaging, and	of the University of Bristol to promote separation and	hand washing, solvent rinsing, or autoclaving to clean
equipment within or hearby	recycling of lab waste. This includes recycling of Expanded	and reuse plastic and glassware. Includes links to a
practice.	Polystyrene used for medical box packaging.	Green Washing page.
WR2. There is no mixing of	Laboratory Waste Segregation at the University of	Health Care Technical Memorandum 07-01: Safe
contaminated with	Edinburgh	Management of Health Care Waste
uncontaminated	This presentation at an S-Lab event includes measures that	Department of Health best practice guidance on colour
materials/water etc. so that	the University of Edinburgh finds useful for lab sustainability	coded waste segregation. ¹⁰ Waste audits are also
the latter has to be treated	such as in-house training on segregation of lab waste. The	essential for duty of care and compliance.
as hazardous or special	university has a special <u>laboratory waste website</u> with flow	
waste.	charts illustrating segregation procedures.	
	Reducing Clinical Waste at the University of Newcastle	
	An S-Lab Briefing Paper describes how the University of	
	Newcastle's audit found only 3% clinical waste required	
	incineration. They have since developed a Clinical Waste	
	Minimisation Strategy to divert waste from incineration.	

¹⁰ <u>http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuidance/DH_063274</u>

WR3. Measures are in place	See SE3	See SE3
to minimise 'hoarding' of		
unused equipment with no		
clear future application.		
WR4. Procurement contracts	Reusable Solvent Bottles at the University of Manchester	Reusing Bottles and Packaging
require collection of empty	An S-Lab Briefing Paper notes that the University of	Fisher Scientific collects bottles and associated
bottles, packaging etc.	Manchester's Life Sciences faculty uses a supplier who	packaging from customers for reuse and has won an
	provides solvents in reusable bottles.	award for its lab chemical bottle collection, wash and
		recycling facility.

Issue 9: Water (W)

Overview

Although it is not known how much water is used in HE labs, some data collected from HEEPI benchmarking based on 2001-02 data suggests that that typically labs consume around 1-3 cubic metres of water per metre square of floor area. Based on a typical laboratory of 5,000 m² this translates into an annual water consumption of between 5,000-15,000 m³ at a cost of £11,500-£34,500 This is obviously much lower than lab energy costs, but nevertheless it is likely some savings can be made at very little additional cost.

Good practices are:

- Creating awareness of water consumption and associated costs/environmental impacts amongst users;
- Monitoring consumption to detect leaks and to identify improvement opportunities;
- 'Rightsizing' water-using equipment for tasks and using with as high loadings as possible;
- Using closed loop rather than continuous flow cooling;
- Using purified water appropriately and sparingly, and producing it by reverse osmosis (RO) wherever possible;
- Only buying water efficient devices (with a 'top up' fund to assist if these have a higher first cost).

Criteria	Good Practice Examples	General Information
General		Reducing Water Use in Research Laboratories
		A presentation by Amorette Getty of LabRATS with lots
		of examples of how to save water in labs.
		Reducing Water Consumption in Laboratories
		S-Lab Briefing Paper 5 (includes examples summarised
		left).
W1. In laboratories with	Sample Rinsing Technique Saves Water	Labs21 Water Efficiency Guide for Labs
considerable water use,	LabRATS demonstrate that poor sample-rinsing practices	A useful guide, which though aimed at US labs also
there is awareness of related	can lead to significant water waste, as well as dirty samples.	contains a number of measures applicable to UK
cost and environmental	Three 30-second rinse/dump cycles was more effective than	conditions. These include rainwater harvesting, low
issues amongst laboratory	10 mins of a continuously overflowing beaker.	water toilet fixtures and piping condensate from the
users and policies on		AHUs and chilled water coils back into nearby cooling
appropriate practices.	Efficient Water Rinsing at the University of Manchester	towers for use as make up water.
	An S-Lab Briefing Paper describes water saving practices at	
	Manchester's Geochemistry Dept which include soaking	LabRATS Guidance
	glassware in a water bath after an acid bath to reduce	Advice on Using Timers for Water Valves and Washing
	multiple water rinsing.	Labware Efficiently (with links to a Green Washing
		page).
W2. Water for cooling is	Closed Loop Water Cooling at the University of Bradford	LabRATS Guidance
recirculated rather than	An S-Lab Briefing Paper describes how closed loop water	Advice on <u>Reducing Single Pass Cooling</u> and <u>Eliminating</u>
running continuously to	cooling systems is used for a cell sorter at the University of	Vacuum Aspirators.
waste.	Bradford, saving 11-45 litres per minute.	

W2 (contd.)	Recirculating Chillers at the University of Aberdeen	
	An S-Lab Briefing Paper describes how the University's	
	Marine Biodiscovery Centre replaced 12 water jet vacuum	
	pumps with recirculating chillers, with a payback of less	
	than 3 years.	
	Reducing Water Consumption at the University of Oxford	
	An S-Lab Briefing Paper describes how the University's	
	Physics building has reduced its water consumption by over	
	60% as a result of a series of water conservation measures	
	including water flow restrictors on water cooled apparatus	
	and process chillers to replace mains to drains cooling	
	systems.	
	State of the Art Washing at a US Biomedical Facility	
	The Whitehead Biomedical Research Building at Emory	
	University, Atlanta, Georgia has a vivarium with a state-of-	
	the-art, automated cage-washing system. This recycles	
	water through four stages of cleaning using a counter-	
	current rinsing process. An automated process using	
	robotics disposes of the dirty bedding, feeds the cages	
	through a washer, fills the clean cages with clean bedding,	
	and replaces cages in the racks.	
W3. Water-using equipment		Water Efficiency Practices for Health Care Facilities
is 'rightsized' for tasks and		A US fact sheet provides some useful tips on saving
used with as high loadings as		water from sterilisers and autoclaves in laboratories
possible.		including installing automatic shut-off valves, recycling

W3 (contd.)		steam condensate and running with full loads only.
		LabRATS Guidance
		Advice on <u>Rightsizing Autoclaves</u> and minimising water
		and energy use from Ice Makers, Autoclaves and Stills.
W4. Purified water is used	Replacement of Water Still at the University of St Andrews	LabRATS Guidance
only when appropriate, and	A presentation at an S-Lab event describes how the	Advice on Using Appropriate Water Quality and
produced by reverse osmosis	University's new Medical Sciences Building has replaced a	Eliminating Water Stills.
(RO) wherever possible.	water still with RO and has also installed a water	
	recirculation system for cooling water.	

Issue 10: Innovation and Dissemination (IND)

Overview

The variety of laboratories and practices means that there may be some innovative actions for environmental improvement that have not been covered by other laboratory criteria. Similarly, there may be examples of individuals, research groups or universities who have disseminated information about successful actions to the broader laboratory community. Hence, the S-Lab framework has an additional 4 credits for actions such as these. We will provide some or all of the examples that have been provided by laboratories undertaking the assessment in a future edition of this document.